AMATH 301: Extra Credit 1 Justin Thompson

October 8, 2014

Problem 1 Let $A \in \mathbb{R}^{2 \times 2}$ be given by

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

We claim that

$$
\vec{v}_{1}=\binom{1}{-i} \quad \text { and } \quad \vec{v}_{2}=\binom{1}{i}
$$

are eigenvectors of A with corresponding eigenvectors

$$
\lambda_{1}=i \quad \text { and } \quad \lambda_{2}=-i
$$

Proof. Suppose that $A \in \mathbb{R}^{2 \times 2}$ is given as above. We will first compute the eigenvalues of A by solving the characteristic equation, $\operatorname{det}(A-\lambda I)=0$. Observe,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right) \\
& =(-\lambda)(-\lambda)-(1)(-1) \\
& =\lambda^{2}+1
\end{aligned}
$$

By definition of the characteristic equation, we set $\lambda^{2}+1=0$ and solve for λ. This gives us two eigenvalues, $\lambda_{1}=i$ and $\lambda_{2}=-i$. Now we must find nonzero vectors \vec{v}_{1} and \vec{v}_{2} which satisfy

$$
\left(A-\lambda_{1} I\right) \vec{v}_{1}=\overrightarrow{0} \quad \text { and } \quad\left(A-\lambda_{2} I\right) \vec{v}_{2}=\overrightarrow{0}
$$

Which is another way of saying

$$
A \vec{v}_{1}=\lambda_{1} \vec{v}_{1} \quad \text { and } \quad A \vec{v}_{2}=\lambda_{2} \vec{v}_{2}
$$

To solve $\left(A-\lambda_{1} I\right) \vec{v}_{1}=\overrightarrow{0}$, we let $\vec{v}_{1}=\binom{x_{1}}{x_{2}}$ so that $\left(A-\lambda_{1} I\right) \vec{v}_{1}=\overrightarrow{0}$ becomes

$$
\left(\begin{array}{cc}
-\lambda_{1} & -1 \\
1 & -\lambda_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

This gives us the system of equations

$$
\begin{aligned}
-\lambda_{1} x_{1}-x_{2} & =0 \\
x_{1}-\lambda_{1} x_{2} & =0 .
\end{aligned}
$$

Since we're trying to find a nonzero vector which satisfies both of these equations, I'll choose $x_{1}=1$ to make the calculations simple. Substituting $x_{1}=1$ into the first equation in our system gives

$$
-\lambda_{1}-x_{2}=0
$$

implying that

$$
x_{2}=-\lambda_{1} .
$$

We have to check that this solution works in the second equation before moving on. Substituting $x_{1}=1$ and $x_{2}=-\lambda_{1}$ into our second equation, $x_{1}-\lambda_{1} x_{2}=0$, gives

$$
\begin{array}{r}
1-\lambda_{1}\left(-\lambda_{1}\right)=0 \\
1-i(-i)=0 \\
1-(-i) i=0 \\
1+i^{2}=0 \\
0=0
\end{array}
$$

so that the second equation is also satisfied. (Is it true that the second equation will always work out? This would be a good exercise if you're interested!) Since both equations work out, then

$$
\vec{v}_{1}=\binom{1}{-i} \quad \text { and } \quad \lambda_{1}=i
$$

should satisfy $A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$. Let's check.

$$
\begin{aligned}
A \vec{v}_{1} & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{-i} \\
& =\binom{0+i}{1+0} \\
& =\binom{i}{1} \\
& =i\binom{1}{-i} \\
& =\lambda_{1} \vec{v}_{1} .
\end{aligned}
$$

Therefore, we can conclude that \vec{v}_{1} is an eigenvector of A with eigenvalue $\lambda_{1}=i$. Using the exact same method as above, we find that

$$
\vec{v}_{2}=\binom{1}{i} \quad \text { and } \quad \lambda_{2}=-i
$$

are an eigenvector-eigenvalue pair because

$$
\begin{aligned}
A \vec{v}_{2} & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{i} \\
& =\binom{0-i}{1+0} \\
& =\binom{-i}{1} \\
& =-i\binom{1}{i} \\
& =\lambda_{2} \vec{v}_{2} .
\end{aligned}
$$

This is what we wanted to show.

