AMATH 301: Extra Credit 1

Justin Thompson

October 8, 2014

Problem 1 Let $A \in \mathbb{R}^{2 \times 2}$ be given by

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

We claim that

$$\vec{v}_1 = \begin{pmatrix} 1\\ -i \end{pmatrix}$$
 and $\vec{v}_2 = \begin{pmatrix} 1\\ i \end{pmatrix}$

are eigenvectors of A with corresponding eigenvectors

 $\lambda_1 = i$ and $\lambda_2 = -i$.

Proof. Suppose that $A \in \mathbb{R}^{2 \times 2}$ is given as above. We will first compute the eigenvalues of A by solving the characteristic equation, $\det(A - \lambda I) = 0$. Observe,

$$\det (A - \lambda I) = \det \begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix}$$
$$= (-\lambda) (-\lambda) - (1) (-1)$$
$$= \lambda^2 + 1.$$

By definition of the characteristic equation, we set $\lambda^2 + 1 = 0$ and solve for λ . This gives us two eigenvalues, $\lambda_1 = i$ and $\lambda_2 = -i$. Now we must find nonzero vectors \vec{v}_1 and \vec{v}_2 which satisfy

$$(A - \lambda_1 I) \vec{v}_1 = \vec{0}$$
 and $(A - \lambda_2 I) \vec{v}_2 = \vec{0}.$

Which is another way of saying

$$A\vec{v}_1 = \lambda_1 \vec{v}_1 \quad \text{and} \quad A\vec{v}_2 = \lambda_2 \vec{v}_2.$$

To solve $(A - \lambda_1 I) \vec{v}_1 = \vec{0}$, we let $\vec{v}_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ so that $(A - \lambda_1 I) \vec{v}_1 = \vec{0}$ becomes
 $\begin{pmatrix} -\lambda_1 & -1 \\ 1 & -\lambda_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$

This gives us the system of equations

$$-\lambda_1 x_1 - x_2 = 0$$
$$x_1 - \lambda_1 x_2 = 0.$$

Since we're trying to find a *nonzero* vector which satisfies both of these equations, I'll choose $x_1 = 1$ to make the calculations simple. Substituting $x_1 = 1$ into the first equation in our system gives

$$-\lambda_1 - x_2 = 0$$

implying that

$$x_2 = -\lambda_1$$

We have to check that this solution works in the second equation before moving on. Substituting $x_1 = 1$ and $x_2 = -\lambda_1$ into our second equation, $x_1 - \lambda_1 x_2 = 0$, gives

$$1 - \lambda_1 (-\lambda_1) = 0$$

$$1 - i (-i) = 0$$

$$1 - (-i) i = 0$$

$$1 + i^2 = 0$$

$$0 = 0$$

so that the second equation is also satisfied. (Is it true that the second equation will always work out? This would be a good exercise if you're interested!) Since both equations work out, then

$$\vec{v}_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
 and $\lambda_1 = i$

should satisfy $A\vec{v}_1 = \lambda_1\vec{v}_1$. Let's check.

$$A\vec{v}_{1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
$$= \begin{pmatrix} 0+i \\ 1+0 \end{pmatrix}$$
$$= \begin{pmatrix} i \\ 1 \end{pmatrix}$$
$$= i \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
$$= \lambda_{1}\vec{v}_{1}.$$

Therefore, we can conclude that \vec{v}_1 is an eigenvector of A with eigenvalue $\lambda_1 = i$. Using the exact same method as above, we find that

$$\vec{v}_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}$$
 and $\lambda_2 = -i$

are an eigenvector-eigenvalue pair because

$$A\vec{v}_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
$$= \begin{pmatrix} 0-i \\ 1+0 \end{pmatrix}$$
$$= \begin{pmatrix} -i \\ 1 \end{pmatrix}$$
$$= -i \begin{pmatrix} 1 \\ i \end{pmatrix}$$
$$= \lambda_2 \vec{v}_2.$$

This is what we wanted to show.