
Midterm A1 / A2 / B1 / B2
Section 4 / 2 / 4 / 2

November 10, 2014

Problem 2 / 3 [10pt]: Finish the following function. For input: f is a function so that f(xj) returns
the value of an interpolating polynomial at xj and x is a row vector of values. For output: y is a row vector
of the values f(xj) for each element in x. Assume that f(xj) only accepts one value at a time.

function y = evaluateF(f , x)

end

This is a very tricky problem. When I sat down to take this exam, I almost missed this one completely.
In the previous problem, you either wrote the function f(x) as a linear system (A1 / A2) or you found a
Lagrangian polynomial named f(x) (B1 / B2). In any case, you’ve done a lot of work to accurately describe
f(x). If this problem were stated like this

Problem 2 / 3 [10pt]: Finish the following MATLAB function named ”evaluateF.” For input: g is a
function so that g(tj) returns the value of an interpolating polynomial at tj and t is a row vector of values.
For output: y is a row vector of the values g(tj) for each element in t. Assume that g(xj) only accepts one
value at a time.

function y = evaluateF( g, t )

end

then what we were asking may have been a bit more clear. The first part of solving this problem is recog-
nizing that the f in this problem is not necessarily the same f from the last problem. With that in mind,
let’s look back over the statement of Problem 2 / 3 so that we can identify all of our given information,
and decipher what output we want to produce.

The problem statement tells us that we are given two input variables. One is a function f which takes
only one value at a time, the other is a row vector x. Since f takes only one value at a time, we can’t do this
f([1, 2]), or this f([x1, x2, x3]), or this f([x1, x2, . . . , xn]), or so on. The best we can hope to do is throw one
value into f at a time, like this f(1), f(2), or this f(x1), f(x2), f(x3), or this, f(x1), f(x2), . . . , f(xn). We
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also know that x is a row vector. But we don’t know how many entries it has. So as I’m getting my head
around this problem, I’m just going to write down what x looks like in general. We have

x = [x1, x2, . . . , xm]

for some integer m with m ≥ 1. That is, x may have 100 entries, it may have 1000 entries, or it may have
only one entry. In any case, we want our code to be able to take a given row vector (of any length) and
compute . . . what? Well, the problem says that the output, y, needs to be a row vector of values f(xj) for
each element in x. Since I just wrote x = [x1, x2, . . . , xm] above, it’s pretty obvious how y will look. We’ll
get

y = [f(x1), f(x2), . . . , f(xm)]

Stop! After doing some analysis, let’s review the problem statement and make sure we’re on the right track.
Have we accounted for every bit of information given in the statement above? We’ve looked at x, f , and
we’ve got a descent candidate for y. Since the statement tells us that y is a row vector of the values f(xj)
for each element in x, and since x has the form x = [x1, x2, . . . , xm], then we can conclude that the vector
y (which we want to make our output) needs to have the form y = [f(x1), f(x2), . . . , f(xm)]. But we know
that we can’t simply do this

y = f(x)

because x = [x1, x2, . . . , xm]. We were told explicitly that f(x) = f([x1, x2, . . . , xm]) can not work because
f takes only one value at a time. Then we’ll need to come up with another way to fill a row vector y with
the m values f(xj). Notice that we know how big our row vector y has to be. Each entry in y corresponds
to a given entry in x. Then y and x must be row vectors of the same size. In summary, we have

x = [x1, x2, . . . , xm]

and we want

y = [f(x1), f(x2), . . . , f(xm)].

Stop! Did we get all of the information we need from the problem statement? I think so. The two
equations above describe the entire problem. We have a row vector with m entries and we want to construct
a row vector y with m entries.

How big is m? Well, it could be 1. It could be 2. It could be 216 − 1. We don’t know how large m is.
The only thing we do know is that m is the number of elements in x. On page 2 of the exam, you were
given the MATLAB command size(x). The exam states that for a vector x, we have D = size(x) , where
D is the number of elements in x. This is actually inaccurate. If x is a vector or matrix (of any size), then
D = size(x), where D is a 1 × 2 row vector, whose entries are the dimensions of x. For example, suppose
that x is the row vector given by x = [1, 3, 5, 7]. Then x is 1× 4, so that D = [1, 4] = size(x). If x
were a matrix given by x = [1, 2, 3; 4, 5 6], then x is 2×3 so that D = [2, 3] = size(x). There is a
function, length, which has the property that if x is is a row vector or a column vector, then L = length(x)

where L is the number of elements in x. We’ll see different examples of these usages below.

Okay. Let’s consider our given vector x = [x1, x2, . . . , xm]. There are two ways to get the value m from
x by using the function size. One way it to assign size(x) to a variable like this D = size(x). Then we
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have [1, m] = D, so that m = D(2), or equivalently, m = D(1,2). A better way to access this number is
by throwing a second argument into size. Since we know that x is a row vector, then we want its second
dimension for m. To do this, we can write m = size(x,2). If we wanted to assign the first dimension of x
a variable named n, we would write n = size(x,1). For grading purposes, I treated your usage of size as
either returning a vector or returning number of entries of x depending on the context of your code. That
being said, I took off points for inconsistent usages of variables and functions in your code.

Earlier, I noted that we did a lot of work in the previous problem in order to get information about some
f(x), and that the f in this problem is not necessarily the same f . Maybe your boss gave you some data and
told you to work on getting an f to fit that data. Then later that morning, you get an email from your boss
with a vector x and some function f with some weird stipulations on it. It may or may not have anything
to do with the f that she told you to work on earlier! I agree that this is a very tricky problem, but that is
precisely the point. Computational science and math require careful attention to detail.

Suppose that the following code is the mysterious f , which happens to have nothing to do with your
previous work.

function out = f( z )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FUNCTION: f(z)
%
% INPUT: z a real or complex scalar value with
% real part larger than -1
%
% OUTPUT: out Gamma(x+1)
%
%DESCRIPTION:
%
% Given a scalar , z, f(z) returns the value
% of the Gamma function evaluated at z+1.
%
% The Gamma function is the continuous
% extension of the factorial function to real
% (and complex) numbers. For any positive
% integer , n, we have
%
% Gamma(n - 1) = n!
%
% You can think of Gamma as the function
% which "fills in" all the points between
% the integers. For instance , we know that
%
% 3! = 3 * 2 * 1
% and
%
% 4! = 4 * 3 * 2 * 1
%
% But how do we get a (3.5)!, or a (pi)! ?
% It turns out that if z is one of those
% "missing points" between the integers ,
% we can compute
%
% Gamma(z) = (z-1)!
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%
% But I don 't want that. I want a new
% function f(z) which gives me
%
% f(z) = z!
%
% So I want f(z) = z! = Gamma(z+1).
% Looking up the formula for the Gamma
% function on wikipedia , I find that
%
%Gamma(z) = integral(@(t) t.^(z-1).*exp(-t),0,Inf)
%
% Then I want
%
% output = integral(@(t) t.^(z).*exp(-t),0,Inf) = Gamma(x+1)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

out = integral(@(t) t.^(z).*exp(-t),0,Inf);

end

I urge you to either (a) copy and paste everything (except the page number) from ”function out

=. . . ” all the way to ”end” into a blank file. Name this file ”f.m” and make sure it is in your current
working directory or (b) in your MATLAB environment, select the drop down arrow under ”New” and select
”Function.” Once you do that, a new file titled untitledN.m will appear. N will depend on the number of
untitled files you’re currently working on. If you have none, then your file will be named ”untitled.m” and
will look like this.

function [ output_args ] = untitled( input_args )
%UNTITLED Summary of this function goes here
% Detailed explanation goes here

end

From here, you can change your new file to look like the one I made. You only have to copy and paste the
one important line from my code and change the first line of your file a little. A MATLAB function must
have the same filename as the function name. If you’ve changed untitled to f, then when you go to save
the file, MATLAB will already suggest that its name should be f.m. If you changed the top line so that it
reads ”function out = myWickedCoolFunction(x), then MATLAB will suggest that its name should be
myWickedCoolFunction.m, and so on. You need to name the file so that the two names are the same. So if
I did this

function [ OUT ] = continuousFactorial( IN )

% OUT = Gamma(IN+1) = (IN)!
% (for input = IN = a + i*b with a > 0)

OUT = integral(@(t) t.^(IN).*exp(-t),0,Inf);

end

then I would need to make sure I save my file as continuousFactorial.m.
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Let’s move on as though you’ve saved your function as f.m. Making sure that the file f.m is in your
Current Folder (one of the windows in the MATLAB environment, also called your current or working di-
rectory), then you can type f(3) into the command window. The returned value should be 6.000, if you’re
only showing 4 decimal places. You can type format long into the command window, hit return, then type
f(3) again. You’ll see that this is a very good numerical approximation to the true value, 3! = 6. Now try
this. Define a vector x by typing x = 0:0.01:2; Then try f(x) and you’ll get all kinds of scary errors. This
is what we mean by ”f(xj) only accepts one value at a time.”

There are many ways to complete the function evaluateF. The most straightforward way to do this is to
use a for loop. We can use this method because MATLAB gives us a way to access the number of elements
in the given variable x via the size or the length functions. Below, we’ll see some examples as we continue
our exploration of the Gamma function, Γ(x), which we define right now for all complex numbers x with
real part greater than zero.

Γ(x) =

∫ ∞
0

tx−1e−tdt (1)

Then we have our crazy f(z) given by f(z) = Γ(z + 1). Substituting, we get

f(z) =

∫ ∞
0

tze−tdt (2)

which, therefore, must be defined for all complex z with real part greater than −1. Now let’s plot this
function on the interval [0, 2] at 201 equally spaced points. That is, I’m giving you a row vector, x, which
I’ve defined as x = 0:0.01:2. I’m also giving you a function f.m. We’d like to simply do this plot(x,f(x))
to look at our f , but that will give us scary errors (remember calling f(x) earlier?). That’s why we want a
vector y = [f(x(1)), f(x(2)), ..., f(x(m))], so that we can write plot(x,y) and look at f . (It would
have been nice if your boss had mentioned this, but she can be terse in the mornings.) We also want to
plot many different intervals of different lengths. Maybe immediately after looking at f on x = 0:0.01:2,
I realize that I want better resolution and need to chop up [0, 2] into a finer partition, x = 0:0.0001:2.
Perhaps there’s an interesting region around x = 0.46 that I want to look at. It will be useful to make
sure that evaluateF can handle whatever interval x that I give it. The script below is divided into sections
by the lines which read %% Plot on the interval. . . . You’ll see that each section contains a block which
begins and ends with %%% evaluateF(f, x) %%%. The code sandwiched between these lines are examples
of perfect answers, although some ways are better than others.

clear all;close all;clc

% Plotting f(x) = Gamma(x+1)

%% Plot on the interval 0 <= x <= 2

x = 0:0.01:2; %splits [0, 2] into 201 points

%%%%%% evaluateF(f,x) %%%%%%
y = zeros(size(x));

for i = 1:size(y,2)

y(i) = f(x(i));
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end
%%%%%% evaluateF(f,x) %%%%%%

plot(x,y)

%% Plot on the interval 0.2 <= x <= 0.8

x = 0.2:0 .0005:0.8; %splits [.2, .8] into 1201 points

%%%%%% evaluateF(f,x) %%%%%%
y = zeros(1,length(x));

for i = 1: length(y)

y(1,i) = f(x(1,i));

end
%%%%%% evaluateF(f,x) %%%%%%

plot(x,y)

%% Plot on the interval .45 <= x <= .5

x = 0.45:0 .00005 :0.5; %splits interval into 1001 points

%%%%%% evaluateF(f,x) %%%%%%
s = 0;
y = []; %NOT computationally efficient
while s < size(x,2)

s = s + 1;

y = [y f(x(s))];
end
%%%%%% evaluateF(f,x) %%%%%%

plot(x,y)

%% Plot on the interval .461 <= x <= .462

x = linspace (0.461 ,0.462 ,2000); %splits interval into 2000 points

%%%%%% evaluateF(f,x) %%%%%%
y = zeros(size(x,1),size(x,2));

for i = 1:size(x,1)
for j = 1:size(x,2)

y(i,j) = f(x(i,j));

end
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end
%%%%%% evaluateF(f,x) %%%%%%

plot(x,y)

All of these methods return the vector y = [f(x(1)), f(x(2)), ..., f(x(m))]. Take a look at the
second to last method. This way gives exactly the y that we want, but every time we go through the while
loop, the size of y changes. Then on the first loop, MATLAB has to take a second and say, ”okay hold on.
I need to change the size of y from a 0 × 0 to a 1 × 1.” Then it goes along until the next time when it has
to change y from a 1 × 1 to a 1 × 2. And so on until y is a 1 ×m. Then MATLAB will have performed a
bunch of extra steps it didn’t need to. Since we know ahead of time that y will end up being a 1 ×m, then
we can knock out all of that unnecessary updating ahead of time. That’s why we call y = zeros(size(x))

or something similar at the beginning of each example above.

Copy and paste the script above (but not the page number) into a new, empty MATLAB file. The %%’s
will section off the script so that you can run only one section at a time. Run each section. You’ll notice
right away that f has a local minimum around 0.46. Interesting, isn’t it? Curious that there’s a minimum
between 0! and 1!. Maybe if we play with (1) and (2) a little, we can find the minimum value. Yeah. Take
some derivatives . . .

There are a couple of reasons I went off on such a tangent. First, I wanted to introduce the Gamma
function to those of you who are interested and invite you to play around with (1) above. I had fun learning
about Γ(x) and hope that you’ll look into it a little on your own time. But I also wanted to give an example
of a function which has many uses, but will break if you try to give it a vector. And it’s always nice to have
a concrete example of why we want our function evaluateF to depend on the number of elements in x. This
is a major principle in coding.

If you did not receive any comments on this section and received a 0, then your code was unsalvageable
or you did not follow instructions. If you did not receive any comments here and received a 1, then your
code was unsalvageable, but you understood enough to head in the right direction (generally). I took off
points for inconsistent notation. For instance, if you wrote things like this y(1,j) = f(xj), then somehow
you reasoned that to get the jth element of the vector y, we do this y(1,j), but to get the jth entry of x,
we somehow put a subscript in there and hope that both MATLAB and the grader understand what you
mean, then I took off points.

I considered awarding back points in the case of abused notation because the problem has f(xj) written
and not f(x(j)). But after I was half-way through the exams, I felt that a sufficient number of students
understood the statement well enough not to make such mistakes. I’ve decided that it would be unfair to
award points in this case, since so many students gave answers whose notation was not only consistent with
itself, but was also proper MATLAB syntax.
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